Classification of Sextics of Torus Type

نویسنده

  • MUTSUO OKA
چکیده

Abstract. In [7], the second author classified configurations of the singularities on tame sextics of torus type. In this paper, we give a complete classification of the singularities on irreducible sextics of torus type, without assuming the tameness of the sextics. We show that there exists 121 configurations and there are 5 pairs and a triple of configurations for which the corresponding moduli spaces coincide, ignoring the respective torus decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of Reduced Sextics of Torus Type

In [7], we gave a classification of the configurations of irreducible sextic of torus type. In this paper, we give a classification of the singularities on reducible sextics of torus type. We determine the components types and the geometry of the components for each

متن کامل

Zariski Pairs on Sextics Ii

We continue to study Zariski pairs in sextics. In this paper, we study Zariski pairs of sextics which are not irreducible. The idea of the construction of Zariski partner sextic for reducible cases is quit different from the irreducible case. It is crucial to take the geometry of the components and their mutual intersection data into account. When there is a line component, flex geometry (i.e.,...

متن کامل

Polynomial of Sextics

Alexander polynomials of sextics are computed in the case of sextics with only simple singularities or sextics of torus type with arbitrary singularities. We will show that for irreducible sextics, there are only 4 possible Alexander polynomials: (t 2 −t+1) j , j = 0, 1, 2, 3. For the computation, we use the method of Esnault-Artal and the classification result in our previous papers.

متن کامل

Fundamental Groups of Symmetric Sextics. Ii

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with the set of inner singularities 2A8 or A17. We also compute the fundamental groups of a number of other sextics, both of and not of torus type. The groups found are simplest possible, i.e., Z2 ∗Z3 and Z6, respectively.

متن کامل

ar X iv : 0 80 5 . 22 77 v 1 [ m at h . A G ] 1 5 M ay 2 00 8 FUNDAMENTAL GROUPS OF SYMMETRIC SEXTICS . II

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with the set of inner singularities 2A8 or A17. We also compute the fundamental groups of a number of other sextics, both of and not of torus type. The groups found are simplest possible, i.e., Z2 ∗Z3 and Z6, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002